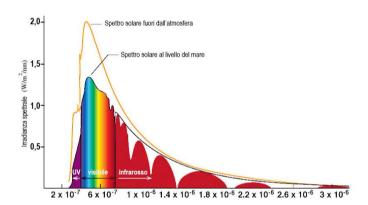

ASSORBIMENTO DELLA RADIAZIONE SOLARE E COEFFICIENTE DI AIR MASS



Energia associata alla radiazione solare:

$$E = \ddot{h} x f$$
 (Joule)

 $\ddot{h} = 6,63x10^{-34}$ J x sec. (costante di di Plank)

f = frequenza della radiazione (Hz)

L'intensità energetica associata a ogni lunghezza d'onda può essere rappresentata tramite lo spettro solare, il cui integrale fornisce la costante solare.

L'andamento dello spettro solare subisce importanti modifiche dovute all'interazione con l'atmosfera: processi di assorbimento e diffusione concorrono a un'attenuazione energetica della radiazione.

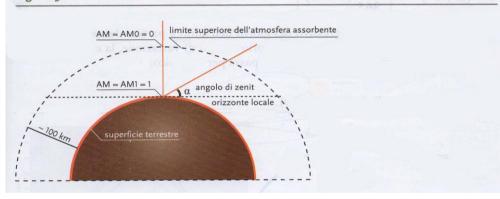
I raggi X e la radiazione caratterizzata da una lunghezza d'onda molto corta vengono assorbiti dall'azoto e dall'ossigeno presenti all'interno della ionosfera, mentre l'ozono assorbe una larga parte della radiazione ultravioletta.

L'intensità della radiazione viene inoltre attenuata da:

- fenomeni di riflessione a livello dell'atmosfera;
- o diffusione di Rayleigh relativa all'interazione della radiazione con le molecole d'aria;
- diffusione di Mie relativa all'interazione con le polveri e gli inquinanti presenti nell'atmosfera.

Tali considerazioni sono tanto più evidenti quanto maggiore è la porzione di atmosfera che la radiazione solare deve attraversare: all'aumentare di questa si riscontra una progressiva diminuzione dell'energia incidente sulla superficie terrestre. Questo fenomeno è ben rappresentato dal coefficiente di Air Mass: lo strato d'aria da attraversare è mi-

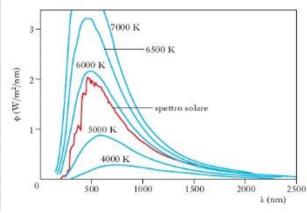
nimo quando il Sole è allo zenit (ovvero a 90° sull'orizzonte) e aumenta via via che si abbassa. Indicando con AM0 la densità della radiazione solare extra-atmosferica, con AM1 quella con il Sole allo zenit in una giornata perfettamente assolata e con α l'angolo di altezza del Sole rispetto all'orizzonte, la massa d'aria relativa al livello del mare può essere calcolata come:


$$AM = \frac{1}{sen(\alpha)}$$

Nella Tabella 3.1 si riporta una quantificazione dei fenomeni di assorbimento e diffusione espressi in funzione del coefficiente di Air Mass.

Tabella 3.1 - Air Mass e fenomeni di diffusione e assorbimento.

AM	Assorbimento	Diffusione di Rayleigh	Diffusione di Mie	Incidenza totale
1,00	8,7 %	9,4%	0-25,6%	17,3-38,5%
1,15	9,2%	10,5%	0,7-25,6%	19,4-42,8%
2,00	11,2%	16,3%	4,1-4,9%	28,8-59,1%
5,76	16,2%	31,9%	15,4-74,3%	51,8-85,4%
11,5	19,5%	42,5%	24,6-86,5%	65,1-93,8%


Figura 3.2 - Air Mass.

Spettri solari e temperatura relativa delle stelle

Il sole è una stella gialla (tipo spettrale G) avente una temperatura superficiale di circa 5000 K (Kelvin)

Spectral Type	Color	Temperature (K)*	Spectral Features
o		28,000-50,000	lonized helium,especially helium
В		10,000-28,000	Helium, some hydrogen
Α		7,500-10,000	Strong hydrogen, some ionized metals ***
F		6,000-7,500	Hydrogen and ionized metals such as calcium and iron
G		5,000-6,000	Both metals and ionized metals especially ionized calcium
к		3,500-5,000	Metals
м		2,500-3,500	Strong titanium oxide and some calcium

